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Abstract

Payments for Ecosystem Services (PES) are voluntary programs where private or
public beneficiaries of ecosystem services (a public good) agree to pay private pro-
ducers of ecosystem service (ES) inputs. However, when there is private risk to the
private provisioning of ES inputs, then there may be gains to offering loss protection
(indemnity). This paper characterizes conditions in which it is optimal for a budget
constrained regulator to (i) offer indemnity in conjunction with a linear pricing contract
and (ii) to pursue both poverty alleviation and the social benefits of the ES inputs.

We find that it is optimal for the regulator to completely take on the risk of pro-
ducing ES inputs (or outputs), i.e., offer full indemnity, if agents are risk neutral.
Furthermore, the value from optimally choosing the indemnity, compared to the no-
indemnity case, is higher whenever agents are more risk averse with simulated increases
in ES supply between 5% and 40% for the same budget. We also provide a guide to
practitioners and empirical researchers on how to evaluate the appeal of indemnity in
any particular setting for which PES exists and provision of inputs is risky. Lastly, we
identify a estimatable threshold for the business-as-usual ES supply curve slope above
which it is optimal to pursue the dual objective.



Introduction

Ecosystem services (sometimes referred to as environmental services) are the aspects of an

ecosystem (or environment) that provide benefits to humanity, directly or indirectly (Mil-

lennium Ecosystem Assessment, 2005; Fisher, Turner and Morling, 2009).1 A majority of

ecosystem services (ES) fall within the realm of public goods therefore are supplied at subop-

timal levels. Worse yet, early assessments indicate that these services are degrading at rapid

rates (Millennium Ecosystem Assessment, 2005). One solution for this market failure that

has gained popularity among scholars and practitioners is known as payments for ecosystem

services (PES) (Salzman et al., 2018). PES programs facilitate the creation of contracts

between ES beneficiaries (or their representative such as the government or regulator) and

ES suppliers where the beneficiary agrees to pay the supplier for their provision of ES. PES

contracts are voluntary programs where agents have to opt into participation which is in

contrast to Pigouvian taxation. Around the world, there are now 550 PES programs with a

combined annual payment of around $36 billion USD (Salzman et al., 2018).2

PES schemes are essentially an application of the Coase Theorem and can be contracted on

either ES outputs (like lower atmospheric CO2) or ES inputs (like carbon sequestering land

uses) and which one to contract on is still an active area of research (White and Hanley,

2016). PES contracts based on outputs are sometimes referred to as performance-based con-

1Direct benefits could include eco-tourism, pollination for agriculture, carbon sequestration, and gen-
eral ecosystem health to prevent desertification. Examples for indirect benefits include non-use value from
biodiversity, predator populations to prevent deer overpopulation, etc.

2In this paper, we abstract away from concerns about the precise definitions of ES (Fisher, Turner and
Morling, 2009) and PES (Schomers and Matzdorf, 2013) where there are disagreements on how narrow or
broad each definition should be. Throughout this paper, both ES and PES will be used to refer to the
broadest definitions of both.
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tracts while input-based ones are also known as action-based contracts. One central tradeoff

between these two types is that contracting on outputs reduces the uncertainty of benefits

from higher ES. However, because of the variability in nature, the ES production function is

inherently stochastic which means that contracting on ES outputs could put significant risk

on the agent. Further, it is typically much harder to monitor ES outputs compared to ES

inputs (Burton and Schwarz, 2013; Derissen and Quaas, 2013).3 Consequently, many PES

programs are contracted on ES inputs rather than outputs (Jack, Kousky and Sims, 2008)

with the majority of European PES programs being input-based (Wuepper and Huber, 2022).

The PES literature has acknowledged the important role that risk plays in agents’ PES

related decisions but rather than formalizing its role, it has chosen to mostly sidestep the

issue by narrowing its focus on input-based PES. We argue that risk ought to have a larger

consideration in the design of PES programs, regardless of whether it is output or input

based. This paper contributes to a small set of papers that analyze the role of risk in PES

payments by offering an alternative to increased payments, that is, offering indemnity in-

stead. Our goals with this paper is to (i) define the necessary and sufficient conditions for

when it is optimal for the regulator to offer positive indemnity payments and what that

optimal indemnity is, (ii) offer an approach to evaluate how large such gains could be, (iii)

define further conditions for when it is optimal to pursue the dual objective of additionality

and poverty alleviation.4

3Though remote sensing is making monitoring environmental factors at large more and more accessible,
it is still quite difficult to attribute individual contributions to aggregate environmental quality measures.

4Indemnity simply means protection against financial loss/burden. Insurance is a subset of indemnity in
that it specifically requires the indemnitee to pay the indemnitor for indemnity.
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The model tasks the regulator with representing the beneficiaries of the ES. Their objective

is to maximize the gross social benefit given a fixed budget by choosing both payment (or

subsidy) level and an indemnity level. The typical PES contract is known as linear pricing

contracts which defines a measurable and verifiable ES input and pays a subsidy for each

unit of input supplied.5 The typical linear PES contract chooses the optimal payment level

conditional on the indemnity being zero which will henceforth be referred to as the pure

payment contract. In contrast, the optimal contract is arrived at by allowing the regulator

to freely choose both the payment and indemnity levels.

We find that the pure payment contract always offers full indemnity whenever agents are

risk averse but that when agents are risk neutral, the optimal and pure payment contracts

provide the same social benefits per government dollar spent. The reason for this has been

well understood from the insurance literature which is that the regulator is effectively risk

neutral so that the cost of bearing the risk of ES provision is equal to the mean of the cost

shock. However, a risk adverse agent would value the cost from risk at the mean cost shock

plus some risk premium. Thus, the regulator can always arbitrage this by offering indemnity

and “charging” a higher price than it costs to insure. The risk neutrality on the part of the

regulator can be justified on the grounds of having a large number of beneficiaries Arrow and

Lind (1970). Further, the value gained from implementing the optimal contract, relative to

the pure payment contract, increases with the coefficient of relative risk aversion. Following

5Linear pricing contracts are in contrast to optimal contracts from the mechanism design literature. Those
contracts are optimal in the sense that it maximizes social welfare by explicitly accounting for the asymmetric
information about agent’s counterfactual ES input supply (i.e., additionality). They are a menu of pairs of
ES input levels and the corresponding payment, carefully designed to create a separating equilibrium that
maximizes expected welfare (Mason and Plantinga, 2013).
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Chetty (2006), we show how to estimate a lowerbound for this parameter using estimates

of relevant elasticities and moments of the ES cost function. We also conduct a numerical

exercise that illustrates the relationship between the magnitude of risk aversion and the

value added from implementing the optimal contract. Lastly, we find that the pursuit of the

dual objective of maximizing ES benefits with minimizing poverty is optimal only when a

particular comparative static is below some threshold. Specifically, the condition states that

the business-as-usual level of ES provision must increase with wealth at a sufficiently high

rate.

Section will briefly discuss the context and literature review up which this paper hopes to

contribute. Section outlines the model detailing both agents’ and principal’s problems The

next section deals with additionality and outlines conditions in which it is optimal for the

regulator to pursue the dual objective of additionality and poverty alleviation.

Literature on Risk in PES

This paper relates closely with the literature on risk associated with payments for ecosystem

services (PES) which has since established that the required linear payment needed to induce

a certain “risky green” action is higher if agents are risk averse compared to being risk neutral

(Beńıtez et al., 2006; De Pinto, Robertson and Obiri, 2013). Beńıtez et al. (2006) derived

the optimal payment needed to induce the adoption of farming practices/technologies that

improve soil carbon sequestration and find that such payment increases with risk aversion.
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De Pinto, Robertson and Obiri (2013) does something similar for the adoption of farming

practices that help with climate change mitigation as well uses Ghana as a case study. The

risks faced by agents in each of those papers are related to revenue risk associated with the

desirable “green” practices or technologies. However, loss protection, also known as indem-

nity, is rarely brought up as a potential tool to address risk averse behavior.

There are many other instances in which the participation into PES programs introduces risk

to the agent’s bottom line. Another example of risks within input based PES is payments

to encourage coexistence with predators where agents are paid to avoid revenge killing of a

predator that caused damage to either property (livestock) or human life (Dickman, Mac-

donald and Macdonald, 2010). Many times, these payments are in conjunction with either

payments for or requirements to provision ES inputs such as using guardian dogs to mini-

mize conflicts with predators. It is in the predation context that the literature has explicitly

analyzed the role of insurance in conservation and find success in preserving carnivore pop-

ulations and habitats (see Dickman, Macdonald and Macdonald (2010) for a review). There

are also case studies that find that such indemnity schemes lead to moral hazard (Bautista

et al., 2019). Other examples of risk associated with PES participation include the risk that

payments will not be received due to institutional mistrust (Jack et al., 2022), risks asso-

ciated with stochasticity of nature within output based PES contracts, and the risk from

habitat maintenance which can cause damages to livestock through disease transmission

from increased wildlife (Rhyan et al., 2013).

To the best of our knowledge, the literature has not yet addressed what role that “insurance”
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or, more precisely, indmenity, can play in achieving ES goals under an economic optimality

standpoint.6 Only Graff-Zivin and Lipper (2008) suggest insurance as a tool to be used

in conjunction with the standard linear PES contract. However, those authors mentioned

it casually as part of a general discussion rather than giving it a formal treatment. This

paper hopes to bring everything together by thinking about the issue that risk poses in PES

schemes generally and how a regulator should account for this in its design of linear pricing

PES contracts.

Model

The linear PES contract is characterized by (1) an indemnity rate I ∈ [0, 1] that is paid out

for each dollar of loss (xiϵi) that occurs and (2) the ES input payment rate p which is paid

for each unit of ES input xi (henceforth referred to as the pay rate). There is a cost shock ϵi

that is distributed (µϵ, σ
2
ϵ ) and has support over [0, e] and when multiplied with xi produces

the loss that an agent faces for choosing xi. I assume that only one ES input xi is being

contracted and that the input is continuous over [0,∞] so that if a cost shock occurs, the

PES participant’s loss equals xiϵi but receives xiϵiI in indemnity payments. If the agent does

not participate in the PES program, then xi = 0. Potential enrollees all have heterogeneous

initial wealth ωi and are heterogeneous in their known input cost function gi(xi, ωi) and for

brevity, subscripts i will be henceforth omitted when risk of confusion is low.7

6The main difference between insurance and indemnity is that insurance implies that there is an insurance
premium whereas indmenity is a much more general sense of protection against loss and does not require
the insuree to pay a premium or cost of insurance.

7Small letters will denote individual level values and big letters denoting aggregate values.
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Agents have Bernoulli utility u(c) over consumption c and a budget constraint defined in

(1). Thus, consumption is only stochastic when opting into the PES program by choosing

x > 0 and deterministic if x = 0.8 For any given policy level (I, p), there will be X units

of ES input supplied in the aggregate which then engenders ES output ES(X). This ES

output then leads to some level of social benefit B̃(ES(X)) which may be random as well.

From here on, denote B = B̃ ◦ ES as the expected social benefit and is a function of the

aggregate ES inputs provided, X.

Agent’s Problem

Agents are expected utility maximizers who take contract (I, p) as given and chooses ES

input level.

max
x

E [u(c)]

s.t. c = ω + xp− g(x, ω)− xϵ(1− I)

x ≥ 0

(1)

The ES input cost function is assumed to be increasing and convex (gx(x, ω) > 0, gxx(x, ω) >

0.9 The first order condition is given by (2) which implicitly defines the interior solution x∗.

E

[
u′(c∗(x∗, ω))

∂c∗

∂x

]
= 0 (2)

8There is no loss of generality since one could simply treat ω as a random variable as well.
9One could allow agents to derive positive benefits from provision of x and include a second argument

into the utility. Then the RHS of (2) would instead be equal to E[ux(c, x)]. Further, one would have to
follow more closely to Chetty (2006) in order to account for the role of complementarity between x and c in
the application stage of this paper.
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Using monotone comparative statics, it is possible to sign
∂x∗

∂p
and

∂x∗

∂I
.

Lemma 0.1. Given contract (I, p), the provision of ES inputs is non-decreasing in indemnity

payment rate I nor is it decreasing in the payment rate p, i.e.,
∂x∗i
∂I

≥ 0 and
∂x∗i
∂p

≥ 0.

See proof on page 30.

Lemma 0.1 says that an agent’s supply of ES inputs weakly increases with both the pay

and indemnity rates. This implies that there must necessarily be a trade off faced by the

regulator with a fixed budget G who maximizes expected social benefit, B(X). The natural

question then arises, when is it optimal for such a regulator to offer a positive indemnity

rate at the expense of offering higher p?

Planner’s Problem

The social planner takes government budget G as fixed and seeks to maximize aggregate

supply of ES input X = X(x∗1, . . . , x
∗
n) =

∑
i

x∗i . Note that the formulation of (3) excludes

the welfare of the ES suppliers since the goal is not to achieve a first best outcome, rather the

objective is to maximize the benefit of a public good given a fixed budget. If the regulator’s

budget constraint is not binding then the regulator’s solution is isomorphic to the Coasean

bargaining outcome and will actually achieve first best.

max
(I,p)

B(X) s.t. X(p+ µϵI) ≤ G (3)

With the inclusion of indemnity payments, the government expenditure for any given PES

8



contract (I, p) is now stochastic meaning that there are multiple ways to formulate a bud-

get constraint for the regulator. Equation (3) formulates the budget constraint in terms of

expectations where µϵ is the expected value of the cost shock which can be justified on the

grounds of having a large beneficiary population (Arrow and Lind, 1970). Alternatively, the

budget constraint can be formulated in probabilistic or extreme terms, e.g., the probability

that the regulator’s expenditure exceeds G is less than some threshold or the budget con-

straint can be formulated to ensure that the budget will not be exceeded in the event of an

extreme shock (where all agents experience shock ϵi = e).

When are indemnity payments optimal?

The formulation of (3) differs slightly from the standard linear pricing PES contracts. The

standard linear pricing PES contract takes I = 0 as given, i.e., there is never any indemnity

payments and is usually so for exogenous reasons rather than a result of the regulator be-

having optimally. As a reminder, this is referred to as the pure payment contract while the

optimal contract refers to the case where the regulator optimally chooses both I and p. The

central question here is whether the regulator can achieve a higher indirect social benefit

function when the constraint I = 0 is relaxed. In other words, when is it optimal for the

regulator to share the risk of supplying ES inputs with the ES input suppliers?

Proposition 0.2. Given the ES supply function X =
∑
i

x∗i , where x
∗
i is the solution to (2),

it is optimal for the regulator to offer a positive indemnity rate (I > 0) if and only if agents

are risk averse.

See proof on page 31.
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Under both optimal and pure payment contracts, the regulator’s budget will always be ex-

hausted. If the regulator wanted to increase the indemnity rate I from zero, then their

expenditure will increase by Xµϵ (assuming no supply responses) but then the pay rate p

must be reduced which lowers their expenditure by X. However, increasing I and decreasing

p will lead to countering effects on the supply of ES inputs X which has further impacts

on the budget. Thus, (16) from the proof of Proposition 0.2 simply says that in order for

this budget reshuffling to be optimal, the increase in X in response to an increase in I must

outweigh the decrease X in response to the required decrease in p.

This point can be further illustrated by looking at (4) where (4a) shows that increasing

I increases regulator’s expected expenditure (i) through an increase in supply X and (ii)

through increasing the amount paid on existing supply Xµϵ in expectation. Then to re-

balance the budget, a decrease in p is needed leading to lower spending on existing supply X

and by lowering the total ES offered. Suppose that the condition from Proposition 0.2 holds

with equality (∂X/∂I = ∂X/∂p ·µϵ). Then a one unit increase in I requires p to decrease by

µϵ for budget balance. This woulds result in zero change in ES input. If the condition from

Proposition 0.2 holds with strict inequality, then the pay rate p would have to decrease by

more than µϵ to balance the budget but will still result in a higher X. For instance, suppose

∂X/∂p ≈ 0 so that the required decrease in p equals µ+Z since it would have to compensate

for increasing I which increases expenditure through two channels. However, the X would
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clearly be higher and so this reshuffling is optimal for the regulator.

∂G

∂I
dI =

[
∂X

∂I
(p+ Iµϵ) +Xµϵ

]
dI (4a)

∂G

∂p
dp =

[
∂X

∂p
(p+ Iµϵ) +X

]
dp (4b)

Proposition 0.2 is quite important as it shows that the regulator can always extract more

social value given a fixed budget G by offering indemnity payments when agents are risk

averse. This may leave the reader wondering, when does the condition from Proposition 0.2

hold?

Optimal Indemnity Under Risk Aversion

After establishing the fact that it is always optimal for the regulator to offer positive indem-

nity when agents are risk averse, one important question still remains. What is the optimal

level of indemnity that the regulator should offer? As it turns out, the intuition in the above

section suggests that it is optimal to offer full indemnity (I = 1) when the curvature around

point A is sufficiently steeper than around B.

Proposition 0.3. When agent’s are risk averse then it is optimal for the regulator to offer

full indemnity, i.e., I∗ = 1.

See proof on page 33.

One way to visualize the result from Proposition 0.3 is to look at the iso-G (iso budget) and
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iso-X (iso supply) curves in Figure 2. The slope of the iso-G curve can be found by total

differentiating the budget equation in (3) and total differentiating X(I, p). In Appendix 2 I

show that the slope of the iso-X curve is always steeper than that of the iso-G curve when

the condition from Proposition 0.2 holds implying that the solution always occurs at I = 1.

Graphical Argument

The graphical intuition for Proposition 0.2 can be illustrated with a simple example. Con-

sider the case where the choice variable x is binary either 0 or 1, the cost shock is also

binary either 0 or e, and agents differ only in their cost of provisioning, g. Then the pivotal

agent’s decision problem can be summarized by graphing their indifference curve over state-

contingent consumption space (cb, cg) as in Figure 1 where cb and cg are consumption levels

under bad and good states.

When agents are risk neutral (R = 0), their indifference curve is a straight line with slope

π

1− π
where π = P(bad state) = P(ϵ = e). Point A0 would be the pivotal agent’s consump-

tion bundle under the PES with no indemnity where a0 = ω+p0− g and b0 = ω+p0− g− e.

By definition, the pivotal agent is indifferent between A0 and C which implies that p0 =

µϵ + g = πe + g. Now imagine the regulator decides to switch from I = 0 to I = 1 while

holding p = p0. This then pushes the pivotal agent’s consumption bundle under PES par-

ticipation to the 45 degree line (going from A0 to B0) which is a horizontal shift equal to e.

If the regulator stays at this policy point (1, p0), then the increase in ES supply is propor-

tional to the distance CB0. But budget balancing requires a reduction in p which moves the
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consumption bundle towards the origin along the path of the 45◦ line.10 Proposition 0.2 says

that, at B0, if the decrease in p0 required for budget balancing is higher than µϵ, i.e., need

to go from B0 to P1, then it is not optimal to provide any indemnity. This is because the

ES supply at P1 is strictly less than that at A0. Whereas if the budget balancing decrease

in p0 is less than µϵ, i.e., need only go form B0 to P0, then it is optimal for the regulator

to offer positive indemnity since the regulator will always achieve budget balance and being

at P0 offers higher ES supply than A0. It turns out though that the going from B0 to C

will exactly balance the budget and thus, there is no value added or lost from offering full

indemnity which is consistent with Proposition 0.2.

However, when agents are risk averse (R > 0), then the pay rate under the pure payment

contract p1 has to be greater than that under the optimal contract p0 = µϵ + g in order for

the same agent to be indifferent between the consumption bundles from not participating

(C) and from participating (A1). Now if the regulator decides to go from no indemnity

to full indemnity (from A1 to B1), then the ES supply increase is much higher relative to

the risk neutral scenario as B1 is much further up on the 45◦ line than B0. However, the

ES supply response to changes in p is always the same no matter the risk averse behavior.

Consequently, the budget balancing required reduction in p1 is the same as the required

reduction in p0 from the risk neutral case.

10Any change in p shifts agents’ bundles towards the origin on a path parallel to the 45◦ line. Changes in
I shift bundles horizontally.
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Value Added from Indemnity

One may still be wondering how big is the value added from having optimal indemnity

alongside the standard linear pricing PES contracts? In both contracts, the regulator’s

budget constraint will hold with equality in expectation so that the value added V is given

by (5) where X1 = X(1, p(1)) represents the aggregate ES input supply under the optimal

contract and X0 = X(0, p(0)) represents the aggregate ES input supply under the pure

payment contract.

V = B(X1)−B(X0) (5)

Equation (5) implies that the gain from optimal indemnity PES relative to the pure payment

PES is a function of two determinants. First, if the curvature of the expected social benefit

function around the neighborhood of X0 and X1 is high, then the value added would be

higher. Second, if the difference X1 − X0 is high then so too would be the value added.

What makes the difference between these two ES input supplied great has to do with risk

tolerance. This boils down to how much can offering indemnity payments allow the regulator

to relax p(I), the conditionally optimal pay rate? To see this, note that equation (19) is

an increasing function of A and R. Not only that, increasing the risk aversion increases the

ratio in (19) everywhere over I. Hence being able to estimate risk aversion allows researchers

to estimate the proper policy and the magnitude of the gain.

Table 1 shows simulation results using estimates of risk aversion from Elminejad, Havranek

and Irsova (2022) and assuming CRRA utility. Using the parameters from Table 2 and
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randomly generated ES supply costs and initial wealth values (distributions shown in Figure

3), we numerically solve the planner’s problem in (14) once for I = 0 and another for

I = 1 which then allows the calculation of value added. This is then repeated for each risk

aversion parameter in Table 1. The results show that the value added from the optimal

contract relative to the pure payment contract increase with risk aversion and can range

from 5.56% to 42.5% increase in ES supply.

Estimating R

Table 1 is only useful for practitioners if there is a way to estimate risk aversion for any given

PES setting with which to compare with the value added figures in the table. In Appendix

3, I show that
AΓ

µΓ

< A < R where AΓ =
−µu′′Γ

µu′
is some metric for absolute risk aversion and

A =
−µu′′

µu′
is the absolute risk aversion coefficient, loosely speaking. Therefore, estimating

AΓ is equivalent to estimating the lower bound for risk aversion R and thus a lower bound

on the value added from implementing the optimal.

To estimate AΓ, we follow a similar procedure outlined in Chetty (2006) to derive a formula

for AΓ which I expressed as a function of the price elasticity of Hicksian ES input supply

and the income elasticity of ES input supply. The intuition behind this approach is outlined

in Chetty (2006) which utilized various labor supply elasticities to compute upperbounds

for the coefficient of relative risk aversion with the idea being that labor supply responses

to wage changes implies the curvature of the utility function which then gives rise the risk

aversion parameter.
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First, agents’ choices on x (assuming an interior optimum) must satisfy the first order con-

dition (2). Taking derivatives of their FOC and rearranging algebraically gives (6).

∂x

∂p
=

µu′ + xµu′′Γ

µu′gxx − µu′′Γ2

(6a)

∂x

∂w
=

(1− gω)µu′′Γ − µu′gxω
µu′gxx − µu′′Γ2

(6b)

Using Slutsky’s decomposition (shown in Appendix 4) for compensated ES input supply (h)

∂h

∂p
=
∂x

∂p
− ∂x

∂ω
x (7)

then the ratio of the substitution effect and income effect is given by (8)

∂h/∂p

∂x/∂ω
=

(
∂x/∂p

∂x/∂ω
− x

)
(8)

Then combining (6) with (8) and some algebraic manipulation gives our equation for the

desired risk aversion metric (9).

AΓ =
1 + gxω

(
x+

εhp
εxω

ω
p

)
(gω − 1)

(
εhp
εxω

ω
p

)
+ x(gω − 2)

(9)

Where εhp and εxω are the price elasticity of Hicksion supply and income elasticity of supply,

respectively. Thus to estimate R, one can simply estimate (9) and treat the estimate of

AΓ

µΓ

as the coefficient of relative risk aversion R. One downside is that estimate (9) is quite
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informationally demanding as it requires the researcher to estimate not only the substitution

and income elasticities, but also various aspects of the ES cost function, gω and gxω. However,

if one is able to establish that the cost function does not change with income gω ≈ 0, then by

Young’s Theorem, the marginal cost will not change either gxω ≈ 0 which will simplify (9)

to (10). Note that gω = 0 implies that εxω < 0 which makes (10) much easier to estimate.

AΓ =

[
− εhp
εxω

ω

p
− 2x

]−1

(10)

Additionality and Poverty Alleviation

In practice, private agents may produce strictly positive levels of the ES input in the absence

of a PES program and therefore there is considerable interest in the literature and policy

arena on the idea of additionality. That is, researchers and policy makers want to make

sure that the ES inputs being contracted for are additional and hence would not have been

procured in the absence of a PES program. It is often very costly to monitor additionality

for all program applicants which could render simple linear contracts, like the one proposed

above, inefficient. There are many papers that try to create a mechanism to generate a

separating equilibrium that is efficient (Mason and Plantinga, 2013). However, this is only

necessary when the regulator cannot observe types which is something of the opposite ex-

treme. There are characteristics of households that are cheaply observable such as income

or wealth. Then a natural question is when does additionality decrease (or increase) with

wealth? Policy makers are often interested in this as this directly answers the question of

when is it optimal to have the dual objective of increasing ecosystem services and providing
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poverty alleviation. Additionality can be defined as

αi = x∗i − xbaui (11)

It is clear from (11) that additionality decreases with wealth if and only if (12) holds.

∂x∗i
∂ωi

≤ ∂xbaui

∂ωi

(12)

Without functional form assumptions, however, evaluating (12) is quite difficult. Instead,

Proposition 0.4 relies on the intuition that in order for additionality to decrease in wealth,

the slope of the xbau curve, when plotted against ω, cannot be too flat (shown in Figures 4

and 5). A sufficient condition for (12) to hold is for the x∗ curve to be decreasing in ω while

the xbau curve is increasing. However, neither curve is necessarily required to be increasing

or decreasing. What is necessary is for the difference between the two to be decreasing in ω,

hence the restriction the slope of the xbau curve.

Proposition 0.4. Take PES contract (I, p) as given. Additionality decreases in wealth

(poorer households have higher additionality) if the change in the business-as-usual level of

ES input in response to a change in wealth is above some lower bound. Specifically,
∂α

∂ω
< 0

if and only if

∂xbau

∂ω
>
µAΓ(hω − 1)− hαω
µAΓhα + µAΓ2

where A = −u
′′(c)

u′(c)
is the coefficient of absolute risk aversion, Γ = p − hα − ϵ(1 − I) is

the random marginal return from chosen additionality α, h(α, ω) is the deterministic cost

function in terms of additionality α so that hα, hω, and hαω are all the partials with respect
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to the subscripts. The terms µ simply denote the expectation of the subscripted variables.

See proof on page 33.

Proposition 0.4 states that in order for additionality to decrease in wealth, i.e., poorer agents

having higher additionality, the business-as-usual ES input supply must increase in wealth

beyond some threshold. In other words, the ES input supplied for poorer agents, in the

absence of PES incentives, must be lower than those of wealthier agents and this difference

must exceed a threshold. The reason for why a bound is neeed on the slope of xbau only is

because ∂x∗/∂ω has the exact same functional form as ∂xbau/∂ω but the two are evaluated

at different values for both x and (I, p). One important take away is that it is not sufficient

for the marginal cost of ES input supply to be simply decreasing in wealth in order for

additionality to decrease in wealth. That is because the if the marginal cost decreases in

wealth, then both the business-as-usual and the PES input supplied will decrease in wealth

too leaving the additionality ambiguous.

Lastly, the bound on ∂xbau/∂ω in Proposition 0.4 can be estimated if one could estimate

aspects of the cost function and relevant elasticities from (9). However, one would still need

to be able to gather sample data on xbau which is often the difficult part. At the very least,

the approach outlined in this paper can be used to motivate such an effort to gather this data.

Doing so can go a long way to answer the question of when it is optimal for the regulator to

pursue the dual objectives of promoting environmental quality and poverty alleviation.

19



1 Discussion

This paper shows that a regulator should couple indemnity payments with a standard linear

pricing PES whenever the ES supply function is sufficiently more responsive to indemnity

than it is to pay rate. Further, this condition (that ES supply function is sufficiently more

sensitive to I relative to p) always holds when agents are risk averse but not when agents

are risk neutral in which case, there are no gains or losses to the regulator from offering in-

demnity. This result is due to the fact that the risk neutral regulator can supply indemnity

at a cost equal to µϵ while risk averse agents are willing to pay more than that to get full

indemnity. Lastly, the optimal level of indemnity with risk averse agents is full indemnity

when agents exhibit risk aversion and is consistent with the insurance literature. Addition-

ally, the social gain from switching to the optimal contract is increasing in the risk aversion

and can range anywhere from 5% to 40% gain in ES supply. Finally, the theoretical results

indicate that targeting low wealth households with a PES contract as a means achieving

both poverty alleviation and environmental improvement can be optimal if the slope of the

business-as-usual ES supply curve (plotted against wealth) is sufficiently steep.

For practitioners, I show how one could estimate a lowerbound on the value added by esti-

mating a lowerbound on the risk aversion parameter R and certain moments of the ES input

cost function, gxω and gω. The procedure is similar to Chetty (2006) and one important

advantage of the approach outlined in this paper is that one can estimate the indemnity

response of ES supply without needing to first have indemnity implemented in practice.

Although it may still be demanding for researchers to estimate this lowerbound, the infor-
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mational requirement is reduced greatly if it is possible to establish that the ES cost function

is independent of wealth so that one need only estimate (10) rather than (9).

It is important to note that these results do not depend on the specific functional forms for

utility, cost functions, nor the stochastic structure of the cost shock. Furthermore, these

insights can easily be applied to output-based PES programs where indemnity can be linked

to some environmental index similar to index insurance. However, we leave considerations

of moral hazard for future studies but note that moral hazard can manifest itself in numer-

ous ways. One of which is a “scale” response, i.e., the loss protection increases the risky

activity which means increasing ES supply. This response works in favor of the regulator

but it hurts a third party private insurer. On the other hand, indemnity may discourage

activities that reduce the probability and/or the magnitude of a loss but do not affect ES

supply. In the predation context, indemnity against depredation may decrease incentives to

employ guardian dogs which negatively impact both the regulator and the private insurer’s

objectives.
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Figures

Figure 1: Expected Utility of Pivotal Agent: Simple Example
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Figure 2: Iso-G and Iso-X Curves
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Table 1: Risk Aversion and Value Added

Estimated risk aversion Value added (%)
Overall best practice 3.73 18.75
Economics literature 1.24 5.56
Finance literature 7.16 42.5

US 5.81 32.56
EU 1.57 5.56

Stockholder 1.49 5.56
GMM 3.79 18.75

Quarterly data 6.33 35.71

Estimated risk aversion values are taken from Table 6 of Elminejad, Havranek and Irsova
(2022).
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Table 2: Simulation Parameters

Parameter Value
Number of agents 100

Probability of shock 0.10
Cost shock (e) 25.35

Budget 1000

Figure 3: Randomly Generated Distribution of g and ω
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Figure 4: Additionality Increasing in Wealth
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Figure 5: Additionality Decreasing in Wealth
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Appendix: Proofs

Proof of Lemma 0.1. To show that x∗ is non-decreasing in I, we can invoke the Milgrom-

Shannon Monotonicity by simply showing that E
[
u
(
c(x, I)

)]
is single crossing in (x, I).

Suppose x′ > x and I ′ > I. Want to show that (i) E
[
u
(
c(x′, I)

)
− u
(
c(x, I)

)]
≥ 0 implies

E

[
u
(
c(x′, I ′)

)
− u
(
c(x, I ′)

)]
≥ 0 and that (ii) E

[
u
(
c(x′, I)

)
− u
(
c(x, I)

)]
> 0 implies

E

[
u
(
c(x′, I ′)

)
− u
(
c(x, I ′)

)]
> 0.

Let E
[
u
(
c(x′, I)

)
− u
(
c(x, I)

)]
≥ 0.

⇐⇒ E [c(x′, I)− c(x, I)] ≥ 0 (13)

since u() is a monotonic transformation of c(). Rewriting gives

⇐⇒ ω + x′p− g(x′)− x′µϵ(1− I)− [ω + xp− g(x)− xµϵ(1− I)] ≥ 0

⇐⇒ p(x′ − x)− [g(x′)− g(x)]− µϵ(1− I)(x′ − x) ≥ 0

Thus we have

=⇒ p(x′ − x)− [g(x′)− g(x)]− µϵ(1− I ′)(x′ − x) ≥ 0

⇐⇒ E

[
u
(
c(x′, I ′)

)
− u
(
c(x, I ′)

)]
≥ 0

The proof for part (ii) is almost identical to that of (i) except with strict inequalities.
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To show that x∗ is non-decreasing in p follows an almost exact procedure.

Proof of Proposition 0.2. The goal is the show that the planner can achieve a higher level

of indirect social value when I = 0 is relaxed. First, let I be a parameter in the planner’s

problem. The planner then solves the Lagrangian (14) where ψ is the multiplier (distinct

from the multiplier λ in (3)).

F = max
p

B(X) + ψ(G−X(p+ µϵI)) (14)

The goal can be equivalently stated as wanting to show that
∂F
∂I

> 0. We can use the

Envelope Theorem to characterize this partial.

∂F
∂I

= B′(X)
∂X

∂I
− ψ

(
∂X

∂I
(p+ µϵI) +Xµϵ

)

=
∂X/∂I

∂X/∂p

[
B′(X)

∂X

∂p
− ψ

∂X

∂p
(p+ µϵI)

]
− ψXµϵ

(15)

The first order condition in (14) is given by B′(X)
∂X

∂p
− ψ

∂X

∂p
(p + µϵI) = ψX so then we

can write

∂F
∂I

=

(
∂X/∂I

∂X/∂p
− µϵ

)
ψX (16)

Since every term is positive, then we have that
∂F
∂I

> 0 if and only if

(
∂X/∂I

∂X/∂p
− µϵ

)
> 0.

Next, we show that this always holds when agents are risk averse.

We first show that the ES supply response to indemnity (∂x
∂I
) can be expressed as in (17 by
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taking derivative of the FOC wrt to I.11

∂x

∂I
=

µu′ϵ + xµu′′Γϵ

µu′gxx − µu′′Γ2

(17)

Where µz ≡ E[z] and Γ =
∂c

∂x
= p− gx(x)− ϵ(1− I). Then using the fact that

E[u′(c)ϵ(1− AΓx)] = Cov(u′(c)(1− AΓx), ϵ) + E[u′(c)(1− AΓx)]µϵ

and using (18) gives (19).

∂x

∂p
=

µu′ + xµu′′Γ

µu′gxx − µu′′Γ2

(18)

∂x/∂I

∂x/∂p
=
E[u′ϵ(1− AΓx)]

E[u′(1− AΓx)]

=
σ̃

E[u′(c)(1−Rδ)]
+ µϵ

(19)

Where σ̃ = Cov
(
u′(c)(1−AΓx), ϵ

)
and δ =

Γx

c
=

xp− gxx− xϵ(1− I)

w + xp− g(x)− xϵ(1− I)
and A and R

are the coefficient of absolute and relative risk aversion, respectively. We can rewrite σ̃ as

σ̃ = Cov(u′(c)(1−Rδ), ϵ)

Note that E[u′(c)(1 − AΓx)] = E[u′(c)(1 − Rδ)] is then numerator in (18) which is always

positive according to Lemma 0.1. Then (19) implies that (16) is positive if and only if σ̃ > 0.

Since u′(c) is increasing in ϵ and δ is decreasing in ϵ then σ̃ > 0. However, when agents are

11Note that small x denotes individual ES input while big X denotes aggregate ES input.
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risk neutral (R = 0), then (16) equals zero, i.e.,
(

∂x
∂I

= ∂x
∂p
µϵ

)
. Then according to (16), risk

neutrality implies that there is never any change in regulator’s objective function for any

change in I.

Proof of Proposition 0.3. The proof follows directly from looking at the proof for Proposition

0.2 and noting the fact that
σ̃

E[u′(c)(1−Rδ)]
> 0 holds at all levels of I < 1 and that at

I∗ = 1, the FOC from (16) fails to hold with equality meaning that the solution is at a

corner one of which is ruled out by Proposition 0.2, hence I∗ = 1.

Proof of Proposition 0.4. For the comparative statics on additionality α, it is easier to start

with a reframing of the model where the agent’s choice variable is α = x − xb instead of x

where xb = xbau for simplicity. Thus consumption is given by

c = w + p(α + xb)− h(α, ω)− (α + xb)ϵ(1− I)

where h(0, ω) = g(xb, ω) and h(α∗, ω) = g(x∗, ω). Then the optimal additionality α∗ is

pinned by

E [u′(c)Γ] = 0

where Γ ≡ ∂c

∂α
. Then using the Implicit function theorem, we can differentiate this FOC

WRT ω to get

∂α

∂ω
=
µAΓ(1− hω + ∂xb

∂ω
hα) + µAΓ2

∂xb

∂ω
+ hαω

−µAΓ2 − hαα

and since the denominator is negative, then ∂α
∂ω
< 0 if and only if the numerator is positive.
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2 Appendix: Slopes of dG and dX Curves

For tractability but without loss of generality, we assume agents are homogeneous so that

∂X

∂I
= n

∂x

∂I
.

dG Curve:

Total differentiation of budget from (3) and setting equal to zero gives

0 =

(
∂x

∂I
dI +

∂x

∂p
dp

)
(p+ µϵI) + x(dp+ µϵdI)

rearranging and solving for dp/dI gives

dp

dI
= −

∂x
∂I
(p+ µϵI) + xµϵ

∂x
∂p
(p+ µϵI) + x

Then plugging in (??) gives

dp

dI
= −µϵ +

(
σ̃x

1− xµAΓ

)( ∂x
∂p
(p+ µϵI)

∂x
∂p
(p+ µϵI) + x

)
(20)

dX Curve:

Total differentiating X and setting equal to zero and rearranging gives

dp

dX
=
∂x/∂I

∂x/∂p
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then plugging in (17) and (18) and rearranging gives

dp

dX
= −µϵ +

xσ̃

1− xµAΓ

(21)

Since, σ̃ < 0 (from (??)) then it follows from (20) and (21) that the slope of the dX curve

is always steeper than the slope of the dG curve.
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3 Appendix: Lower Bound for µA

Start with the definition of µAΓ

µAΓ = Cov(A,Γ) + µAµΓ

Using definition of covariance gives

µAΓ = ρAΓσAσΓ + µAµΓ

= −σAσΓ + µAµΓ (A increases while Γ decreases in ϵ)

Hence we have

µA >
µAΓ

µΓ

36



4 Appendix: Application of Slutsky

Let e(I, p, u) denote the expenditure function defined in (22)

e = min
x

g(x, ω)− xp+ xϵ(1− I)

s.t. u(c) ≥ u

(22)

The solution to (22) is known as the compensated (Hicksian) ES input supply function xc.

Applying the Envelope Theorem gives Sheppard’s Lemma.

∂e

∂p
= −xc

Making use of the duality at the optimum produces the equality

xc(I, p, u) = x(I, p, e)

Hence

∂xc
∂p

=
∂x

∂p
− ∂x

∂ω
x

Q.E.D.

37


	Discussion
	Appendix: Slopes of  dG  and  dX  Curves
	Appendix: Lower Bound for  A 
	Appendix: Application of Slutsky

